

CONCURSO EBTT 2018

Química - Barbacena

INSTRUÇÕES GERAIS

- 1. A prova terá, no máximo, **3 (três)** horas de duração, incluído o tempo destinado à transcrição do gabarito na Folha de Respostas, único documento válido para correção.
- 2. O candidato deverá conferir os seus dados pessoais na Folha de Respostas, em especial seu nome e o número do documento de identidade.
- 3. Não haverá substituição da Folha de Respostas por erro do candidato ou por qualquer outro dano.
- 4. O candidato só poderá se retirar do recinto após 1 (uma) hora, contada a partir do efetivo início da prova.
- 5. Este caderno contém **20 questões** de múltipla escolha, assim distribuídas: Conhecimento Específico, numeradas de 01 a 20.
- 6. Cada questão apresenta 5 alternativas, de (a) a (e). O candidato deverá lê-las, atentamente, antes de responder a elas.
- 7. Caso o Caderno não corresponda ao cargo de inscrição, esteja incompleto ou com defeito, o candidato deverá solicitar ao aplicador, durante os primeiros 20 minutos, as providências cabíveis.
- 8. O canditado deverá entregar ao aplicador este caderno de provas e a Folha de Respostas.
- 9. O candidato passará o gabarito para a Folha de Respostas, utilizando caneta esferográfica azul ou preta.
- 10. Será permitido o uso de calculadora simples, com operações básicas, e calculadora científica desde que não seja programável e não seja alfanumérica tipo agenda. O candidato é responsável pela correta escolha da calculadora. No dia da prova, todas as calculadoras de todos os candidatos poderão ser auditadas antes do começo da prova por membros da organizadora do concurso.
- As calculadoras que não atenderem os requisitos acima descritos não poderão ser utilizadas e serão recolhidas até o final da prova. É expressamente proibida a troca de calculadoras entre os candidatos durante a prova. O candidato sem calculadora poderá executar a prova.

Exemplos de modelos de calculadoras científicas, não programáveis e numéricas, recomendados pela banca examinadora: HP-9S, HP-10S (Nenhuma outra da HP e sem exceção), CASIO FX-82, CASIO FX-991, SHARP EL-501W-BK, SHARP EL531WBBK, Kenko KK-105, Kenko KK-82LB, Kenko KK-90ms, Elgin SC396 e similares.

ATENÇÃO: FOLHA DE RESPOSTAS SEM ASSINATURA NÃO TEM VALIDADE

A folha de respostas não deve ser dobrada, amassada ou rasurada

Nome do candidato
Por favor, abra somente quando autorizado.

O gabarito e o caderno de provas serão divulgados no endereço eletônico:

concurso.fundacaocefetminas.org.br

1 H Hidrogênio 1,0	2											13	14	15	16	17	Hélio 4,0
Li	Be											B	Ĉ	N N	Ô	F	Ne
Lítio 6,9	Berílio 9,0											Boro 10,8	Carbono 13,0	Nitrogênio 14,0	Oxigênio 16,0	Flúor 19,0	Neônio 20,2
11	12											13	14	15	16	17	18
Na Sódio	Mg Magnésio	3	4	5	6	7	8	9	10	11	12	Al	Si	P Fósforo	S	Cl	Ar Argônio
23,0	24,3	100	100	(5)	12.00	32		100	111111111111111111111111111111111111111	1111		27,0	28,1	31,0	32,1	35,5	39,9
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
Κ	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Potássio 39,1	Cálcio 40,1	Escândio 45,0	Titânio 47.9	Vanádio 50,9	Cromo 52.0	Manganês 54.9	Ferro 55.8	Cobalto 58.9	Níquel 58,7	Cobre 63.5	Zinco 65,4	Gálio 69.7	Germânio 72.6	Arsênio 74,9	Selênio 79,0	Bromo 79,9	Criptônio 83,8
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xn
Rubídio	Estrôncio	Ítrio	Zinco	Nióbio	Molibdênio	Tecnécio	Rutênio	Ródio	Paládio	Prata	Cádmio	Índio	Estanho	Antimônio	Telúrio	lodo	Xenônio
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba		Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Césio 132,9	Bário 137,3		Háfnio 178,5	Tântalo 180,9	Tungstênio 183,8	Rênio 186,2	Ósmio 190,2	Irídio 192,2	Platina 195,1	Ouro 197,0	Mercúrio 200,6	Tálio 204,4	Chumbo 207,2	Bismuto 209,0	Polônio [209]	Ástato [210]	Radônio [222]
87	88	89-103	104	105	106	107	108	109	110	111	112						
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn						
Frâncio [123]	Radio [226]		Rutherfórdio [261]	Dúbnio [262]	Seabórgio [266]	Bóhrio [264]	Hássio [277]	Meitnério [268]	Darmstádtio [271]	Roentgênio [272]	Copérnico [277]						
												•					
Niúm	oro atô	mico	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71

Número atômico	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	ı
Numero atomico	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	T b	Dy	Но	Er	Tm	Yb	Lu	l
	Lantânio 138,8	Cério 140,1	Praseodímio 140,9	Neodímio 144,2	Promécio [145]	Samário 150,4	Európio 152,0	Gadolínio 157,3	Térbio 158,9	Disprósio 162,5	Hôlmio 164,9	Érbio 167,3	Túlio 168,9	Itérbio 173,0	Lutécio 175,0	
Símbolo	89	90	91	92	93	94 D 11	95	96	97	98	99	100	101	102	103	1
Nome Massa atômica	AC Actínio [227]	Th Tório 232,0	Pa Protactínio 231,0	Urânio 238,0	Np Netúnio [237]	Plutônio [244]	Am Americio [243]	Cm Cúrio [247]	Bk Berquélio [247]	Califórnio [251]	Es Einstéinio [252]	Fm Férmio [257]	Md Mendelévio [258]	No Nobélio [259]	Lr Laurêncio [262]	
เพลงจน นเอาเทอน	100000000000000000000000000000000000000	0.0000	3 200,400,00	0.0015000	.0000000	200000	200000	3.50(7.55)	0.0000000000000000000000000000000000000	35/3/35	(2)(0)(02)	(2)((1)(2)	85-17-18	200.02	12000000	1

```
 \begin{array}{|c|c|c|c|} \hline \text{Valores numéricos de algumas constantes físico-químicas:} \\ \hline R = 0.0821 \text{ atm 1 mol}^{-1} \text{ K}^{-1} \\ \hline = 8.3143 \text{ J mol}^{-1} \text{ K}^{-1} \\ \hline = 1.98717 \text{ cal K}^{-1} \text{ mol}^{-1} \\ \hline \Delta G = \Delta H - T\Delta S \\ \hline \hline V = 22.4 \text{ L} \\ \hline Constante de Faraday: 96500 \text{ C} \\ \hline \varepsilon^o = \frac{0.0592}{n} \log k \\ \hline T(K) = T (^{\circ}C) + 273 \quad \text{PV} = nRT \\ \hline \text{Wexpansão} = -\text{PdV} \quad d\Delta H/dT = \Delta \text{ C}^{\circ}p \qquad C_p - C_v = nR \text{ (gás ideal)} \\ \hline \end{array}
```

ln(x) 0 0,69 1,10 1,39 1,61

QUÍMICA - BARBACENA

QUESTÃO 01

O carbonato de cálcio é um composto importante em diversas reações químicas, sendo matéria-prima para a produção de cimento, aço, vidro e gás acetileno. A principal fonte de carbonato de cálcio é o calcário, obtido a partir de atividades mineradoras que vêm causando impactos negativos ao meio ambiente. Para minimizar esse problema, pesquisas utilizando fontes sustentáveis dessa matéria-prima vêm sendo realizadas. Destaca-se o uso do ovo de galinha, que apresenta em sua casca um alto teor desse composto (80% de carbonato de cálcio). Suponha que se deseje obter 10 kg de gás acetileno a partir de cascas de ovos, em um processo sustentável que apresenta rendimento de 80%.

Considere as equações químicas envolvidas nesse processo:

1)
$$CaCO_{3(s)} \stackrel{\Delta}{\rightarrow} CaO_{(s)} + CO_{2(g)}$$

2)
$$CaO_{(s)} + 3C_{(s)} \stackrel{\Delta}{\rightarrow} CaC_{2(s)} + CO_{(g)}$$

3)
$$CaC_{2(s)} + 2H_2O_{(l)} \rightarrow Ca(OH)_{2(aq)} + HC \equiv CH_{(g)}$$

A partir desses dados, é correto afirmar que a produção de acetileno desejada será possível a partir de, aproximadamente, quantos quilos de cascas de ovos?

- a) 38.
- b) 42.
- c) 48.
- d) 53.
- e) 60.

QUESTÃO 02

A partir do diagrama de níveis de energia dos orbitais moleculares para moléculas diatômicas homonucleares, é possível encontrar a ordem de ligação e o comprimento de ligação. Considere as espécies formadas pelo oxigênio: O₂; O₂+; O₂- e O₂-2.

Nesse sentido, é correto afirmar que a ordem crescente de comprimento de ligação dessas espécies é

a)
$$O_2 / O_2^+ / O_2^- / O_2^{-2}$$

b)
$$O_2^+ / O_2^{-2} / O_2^- / O_2$$

c)
$$O_2^+ / O_2^- / O_2^{-2}$$

d)
$$O_2^{-2} / O_2^{-} / O_2^{+}$$

e)
$$O_2^{-2} / O_2^{-1} / O_2^{+1} / O_2^{-1}$$

QUESTÃO 03

A poluição hídrica por compostos metálicos tem aumentado bastante nos últimos anos, consequência do lançamento de efluentes aquosos maltratados ou não tratados no ambiente, o que promove uma alta concentração desses metais em rios e lagos. Uma indústria deseja descarregar um efluente aquoso de vazão igual a 5 L/s, composto pelos poluentes metálicos Cd, Hg, Pb e Zn, em um rio de vazão igual a 30 L/s, e que já apresenta esses metais em sua composição.

As concentrações dos metais no efluente aquoso e no rio, bem como os valores máximos estabelecidos para o consumo humano, conforme a resolução CO-NAMA nº 396 de 2008, podem ser visualizados na tabela a seguir.

Poluentes metálicos	Concentração no efluente aquoso (µg/L)	Concentra- ção no rio (µg/L)	Valor máximo permitido para o consumo hu- mano (µg/L)
Cd	40	1	5
Hg	7	0,2	1
Pb	60	2	10
Zn	25000	1000	5000

Fonte: Elaborada pela Banca a partir do valor máximo informado pela Resolução CONAMA nº 396/2008, 2019.

Considerando que a 100m do local onde ocorre o despejo a mistura já tenha sido completada, a água estará inapropriada para o consumo porque

- a) todos os metais apresentarão concentração acima do valor máximo permitido para o consumo humano.
- apenas o metal Cd apresentará concentração abaixo do valor máximo permitido para o consumo humano.
- c) apenas o metal Hg apresentará concentração abaixo do valor máximo permitido para o consumo humano.
- d) apenas o metal Pb apresentará concentração abaixo do valor máximo permitido para o consumo humano.
- e) apenas o metal Zn apresentará concentração abaixo do valor máximo permitido para o consumo humano.

Considere dois gases ideais inertes A e B que se encontram inicialmente em reservatórios separados nas seguintes condições:

> -A: 0,91 g, a 25° C e pressão de 100 kPa. Massa molar de A= 32,0 g/mol

-B: 200 cm³, 25° C e pressão de 35 kPa. Massa molar de B= 28 g/mol

Foi realizada a mistura dos gases A e B na temperatura de 25°C em um recipiente cujo volume era de 600 cm³.

Nesse sentido, é correto afirmar que a pressão final, em kPa, da mistura entre A e B é de, aproximadamente,

- a) 135.
- b) 129.
- c) 117.
- d) 97.
- e) 90.

OUESTÃO 05

A eletrodeposição, também denominada de revestimento galvânico, consiste na deposição do metal de interesse em um substrato e tem por objetivo funções que vão desde fornecer proteção contra a corrosão até fins simplesmente decorativos. A espessura da camada eletroformada pode ser controlada, o que garante a eficiência do processo. Considere uma indústria de bijuterias de latão que deseja folhear um colar de 30 g com uma camada de ouro através da eletrodeposição. Suponha que para isso um dos eletrodos será o colar e o outro uma placa de Au_(s), ambos mergulhados em uma solução de Au(NO₃)_{3/ao1}.

A esse respeito, avalie as afirmações sobre a deposição eletrolítica da camada de ouro no colar.

- I- Para que a deposição de Au_(s) possa ocorrer corretamente sobre o colar é necessário que a placa de Au_(s) seja o ânodo e o colar o cátodo.
- II- Para se obter uma camada de aproximadamente 26 g de Au_(s) sobre o colar é necessário aplicar uma corrente de 4 A, durante 1 h e 20 min.
- III- Para o melhor funcionamento do processo de eletrodeposição, o eletrodo composto pela placa de Au_(s) poderá ser substituído por um eletrodo de grafite.

- IV- Para que a camada de Au_(s) possa ser depositada sobre o colar é necessário o fornecimento de energia; dessa forma, para essa reação tem-se ΔG negativo.
- V- Para que o colar apresente um teor de Au_(s) igual a 20 % massa/massa sob uma corrente de 4 A, será necessário que o processo fique em funcionamento durante aproximadamente 46 minutos.

Está correto apenas o que se afirma em

- a) le V.
- b) II e IV.
- c) I, II e V.
- d) I, III e IV.
- e) II, III e V.

QUESTÃO 06

Em um laboratório de controle de qualidade de combustíveis foi realizada a combustão do etanol, a 298 K. As propriedades termodinâmicas nessa temperatura para as substâncias envolvidas no processo encontram-se na tabela a seguir. Considera-se que o estado de agregação dos reagentes e dos produtos não é alterado durante o processo. Além disso, no intervalo de temperatura trabalhado, as capacidades caloríficas de todas as substâncias envolvidas são constantes.

Substância	C ₂ H ₆ O _(l)	O _{2(g)}	CO _{2(g)}	H ₂ O _(l)
C° _p / (J/K mol)	111,5	29,4	37,1	75,3
ΔH° _f / (kJ/ mol)	-277,7	0	-393,5	-285,8

Fonte: Castellan (1989, p. 504-507).

A esse respeito, é correto afirmar que o ΔH° da reação a 85 ° C, em kJ/mol, é de

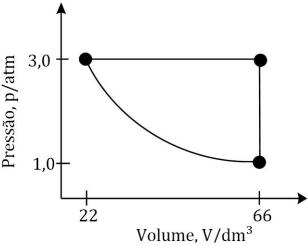
- a) -1366,7.
- b) -1360,7.
- c) -1339,4.
- d) -1330,8.
- e) -1309, 4.

Para a reação $A + B \rightarrow C + 2D$ foram obtidas as velocidades iniciais indicadas na tabela.

[A], mol/L	[B], mol/L	$-d[A]/dt$, mol $L^{-1}s^{-1}$
0,0300	0,2000	16,2 x 10⁻⁵
0,0600	0,2000	32,4 x 10 ⁻⁵
0,0900	0,2000	48,5 x 10⁻⁵
0,2000	0,0303	16,2 x 10⁻⁵
0,2000	0,01515	8,1 x 10 ⁻⁵
0,2000	0,04545	24,3 x 10 ⁻⁵
0,2000	0,07575	40,5 x 10 ⁻⁵
•		

Fonte: Elaborada pela Banca, 2019.

Avalie as afirmações sobre a cinética química da reação acima.


- I- A equação de velocidade da reação química apresentada é velocidade = k[A]²[B].
- II- A constante de velocidade da reação química é 2,7 x 10⁻² mol⁻¹ L s⁻¹.
- III- A meia-vida dessa reação pode ser encontrada através da equação $t_{1/2}=\frac{ln2}{k}.$
- IV- Se as concentrações dos reagentes forem duplicadas, a velocidade da reação ficará multiplicada por 4.
- V- Se as concentrações iniciais dos reagentes forem [A] = 0.60 mol/L e a [B] = 0.20 mol/L, a velocidade será de $3.24 \times 10^{-3} \text{ mol L}^{-1}\text{s}^{-1}$.

Está correto apenas o que se afirma em

- a) I, III e V.
- b) II, III e V.
- c) I, II e IV.
- d) I, III e IV.
- e) II, IV e V.

QUESTÃO 08

Um mol de gás ideal monoatômico sofre transformações reversíveis representadas no diagrama p x V a seguir.

Fonte: Elaborado pela Banca, 2019.

Avalie o que se afirma a respeito do diagrama.

- I- Na transformação a volume constante, o trabalho é igual a zero.
- II- O módulo do trabalho na isoterma é de 88 J.
- III- A variação da energia interna do ciclo é diferente de zero.

Está correto apenas o que se afirma em

- a) I.
- b) II.
- c) I e II.
- d) I e III.
- e) II e III.

A determinação do teor de Fe_(s) presente em minérios pode ser realizada através do método da dicromatometria. Trata-se de uma metodologia rápida e de fácil aplicação. Nesse método, durante a análise quantitativa, a redução de Fe³⁺ (aq) $\mathsf{Fe^{2+}}_{(\mathsf{aq})}$ é realizada pelo $\mathsf{Sn^{2+}}_{(\mathsf{aq})}$, conforme a equação química abaixo:

$$Sn^{2+}_{~(aq)} \, + \, 2Fe^{3+}_{~(aq)} \, \leftrightarrows 2Fe^{2+}_{~(aq)} \, + \, Sn^{4+}_{~(aq)}$$

As semi-reações dos íons envolvidos nesse equilíbrio químico são:

$$Fe^{3+}_{(aq)} \ + \ e^{\text{-}} \rightarrow Fe^{2+}_{(aq)} \qquad \quad E^{\circ} = +0,77 \ V$$

Informe se é verdadeiro (V) ou falso (F) o que se afirma sobre a reação de oxirredução que se encontra em equilíbrio químico estabelecido entre os íons de ferro e estanho (temperatura 25°C).

- () A tensão produzida pela célula formada nesse sistema é + 0,64 V.
- () A constante de equilíbrio para essa reação é de aproximadamente 10^{21,62}.
- () A constante de equilíbrio para essa reação é muito baixa (K<<<<1), indicando que o equilíbrio está deslocado para direita (formação dos produtos).
- () A adição de $Ag^{+}_{(aq)}(E^{\circ}_{oxidação}=-0.80 \text{ V})$ em substituição ao $Sn^{2+}_{(aq)}$ tornaria o processo de redução do Fe³⁺ mais eficiente, porém o uso de Ag⁺(an) oneraria o processo.

De acordo com as afirmações, a sequência correta é

- a) (F); (V); (F); (V).
- b) (F); (V); (F); (F).
- c) (V); (F); (V); (V).
- d) (V); (V); (F); (F).
- e) (F); (F); (V); (V).

QUESTÃO 10

Em um laboratório foram preparadas três soluções (de comportamento ideal) A, B e C contendo a mesma quantidade de matéria dos solutos, não voláteis, em uma mesma massa de solvente, água. Os solutos contidos nas soluções A, B e C são, respectivamente, ácido etanodioico (H,C,O,), ácido sulfúrico (H,SO,) e glicose (C₆H₁₂O₆). Submeteram-se os seguintes volumes (V) de cada solução ao aquecimento separadamente: $V_A = 1L$, $V_B = 100$ mL e $V_C = 2L$, até que se alcançasse a temperatura de ebulição (T) de cada solução. Considere que os referidos ácidos ionizamse totalmente.

A esse respeito, é correto afirmar que a relação entre as temperaturas de ebulição dessas soluções é

- a) $T_A = T_B > T_C$.
- b) $T_{\Delta} = T_{R} = T_{C}$.
- c) $T_A = T_B < T_C$.
- d) $T_{\Delta} > T_{R} > T_{C}$.
- e) $T_A > T_R < T_C$.

QUESTÃO 11

Analise as asserções a seguir e a relação proposta entre elas.

I- A adsorção física, ou fisissorção, geralmente é precedida de uma organização das moléculas que acabam por se fixarem sobre a superfície do adsorvente ($\Delta S < 0$). Sendo assim, para que o processo descrito ocorra, ele deve ser invariavelmente exotérmico

PORQUE,

II- sendo a energia livre de Gibbs, uma grandeza termodinâmica capaz de predizer a espontaneidade de uma reação, para valores negativos de variação de entropia, se ΔH>0, o processo não será espontâneo.

A respeito das asserções, é correto afirmar que

- a) as duas são falsas.
- b) a primeira é falsa e a segunda é verdadeira.
- c) a primeira é verdadeira e a segunda é falsa.
- d) as duas são verdadeiras e a segunda justifica a pri-
- e) as duas são verdadeiras, mas a segunda não justifica a primeira.

O monóxido de carbono é um gás inodoro, incolor e tóxico, sendo difícil identificar a sua presença. A afinidade do monóxido de carbono com a hemoglobina é cerca de 200 vezes maior que a com o oxigênio, o que o torna potencialmente tóxico.

Suponha que a toxicidade do monóxido de carbono possa ser avaliada a partir da sua concentração conforme a tabela a seguir

Faixa de concentração inalada (ppm em vo- lume)	Efeitos na saúde
0 a 10	Assintomático
10 a 60	Capacidade visual reduzida
60 a 80	Dores de cabeça
80 a 120	Taquicardia
120 a 800	Perda de consciência
> 800	Óbito

Fonte: Elaborada pela Banca, 2019.

Considere uma sala hermeticamente fechada e que tenha 5m de comprimento, 4m de largura e 3m de altura e contenha apenas ar a 25° C, sendo que entre os componentes deste esteja o $CO_{(g)}$ com uma pressão parcial de 8 x 10^{-4} atm.

Supondo que o $CO_{(g)}$ se comporte nessas condições como um gás perfeito, é correto afirmar que, se um indivíduo inalar esse ar, sofrerá

- a) uma redução da capacidade visual, porque a concentração de CO_(g) é superior a 10 e inferior a 60 ppm.
- b) uma redução da capacidade visual e dores de cabeça, porque a concentração de CO_(g) é superior a 60 e inferior a 80 ppm.
- c) uma redução da capacidade visual, dores de cabeça, taquicardia porque a concentração de $CO_{(a)}$ é superior a 80 e inferior a 120 ppm.
- d) uma redução da capacidade visual, dores de cabeça, taquicardia e perderá a consciência porque a concentração de CO_(g) é superior a 120 e inferior a 800 ppm.
- e) todos os efeitos da toxicidade provocada devido à inalação de CO_(g), levando-o ao óbito porque a concentração de CO_(a) é superior a 800 ppm.

QUESTÃO 13

Preencha corretamente as lacunas do texto a seguir a respeito da molécula de tetrafluoreto de enxofre (SF_a) .

Nessa molécula, a hibridização do átomo central é ______. A molécula apresenta arranjo ______ e geometria ______. Por isso, pode-se concluir que se trata de uma molécula

A sequência que preenche corretamente as lacunas do texto é

- a) sp³ / tetraédrico / gangorra / apolar.
- b) sp³ / tetraédrico / tetraédrica / apolar
- c) sp³d / tetraédrico / tetraédrica / polar.
- d) sp³d / bipirâmide trigonal / gangorra / polar.
- e) sp³d / bipirâmide trigonal / tetraédrica / apolar.

QUESTÃO 14

Considerando o método de Repulsão entre os Pares Eletrônicos da Camada de Valência (RPECV), associe corretamente as lacunas, relacionando a geometria molecular apresentada à molécula a que se refere.

Geometrias moleculares	Molécula
1) Bipirâmide trigonal	() ICl ₄
2) Gangorra	() IF ₅
3) Pirâmide tetragonal	() PF ₅
4) Quadrado planar	() PF ₆
5) Octaédrica	() IF ₄ ⁺

A sequência correta dessa associação é

- a) (4); (2); (1); (5); (3).
- b) (1); (5); (2); (4); (3).
- c) (2); (3); (1); (5); (4).
- d) (1); (4); (2); (3); (5).
- e) (4); (3); (1); (5); (2).

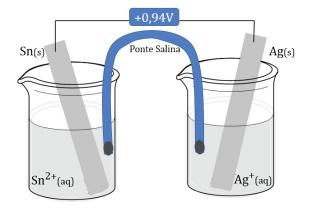
A reação de decomposição da nitroglicerina, $C_3H_5(NO_3)_3$ ocorre por meio do atrito e/ou do calor. Os produtos dessa reação são CO₂, água, oxigênio e um gás X formado por um único elemento químico. Testou-se o poder de detonação de 100g de um explosivo contendo 85% de nitroglicerina. Sabe-se que nenhum outro componente desse explosivo é capaz de produzir o gás X, ou seja, este é obtido apenas da nitroglicerina.

Nesse sentido, é correto afirmar que a massa do gás X, em g, formada para cada mol de nitroglicerina que se decompõe, é de

- a) 15,7.
- b) 18,5.
- c) 21,0.
- d) 35,7.
- e) 42,0.

QUESTÃO 16

Preencha corretamente as lacunas do texto a seguir quanto à relação quantitativa existente entre abaixamento de pressão de vapor e concentração em uma solução ideal.


A pressão parcial de vapor de um componente em uma solução líquida é _____ à fração molar daquele componente pela sua pressão de vapor quando puro. Sendo a pressão de vapor do etanol (CH₃CH₂OH) puro igual a 104 mmHg a 35°C, a solução contendo 927 mg do composto não-volátil benzadamina (C₁₉H₂₃N₃O), utilizado como anti-inflamatório para a região da orofaringe, em 4,6 g de etanol a 35 °C, terá uma pressão de vapor igual a mmHg.

A sequência que preenche corretamente as lacunas do texto é

- a) proporcional / multiplicada / 101
- b) proporcional / dividida / 101
- c) inversamente proporcional / dividida / 103
- d) inversamente proporcional / multiplicada / 103
- e) inversamente proporcional / multiplicada / 101

QUESTÃO 17

O esquema a seguir representa uma célula eletrolítica operando nas condições padrão.

Potenciais-Padrão de Redução
$$Sn^{2^{+}}_{(aq)} + 2e^{-} \rightarrow Sn_{(s)} \qquad E^{o} = -0.14 \text{ V}$$

$$Ag^{+}_{(aq)} + e^{-} \rightarrow Ag_{(s)} \qquad E^{o} = +0.80 \text{ V}$$

Fonte: Elaborado pela Banca, 2019.

O diagrama de célula que representa corretamente a célula eletrolítica é

a)
$$Sn_{(s)} | Ag^{+}_{(aq)} | | Sn^{2+}_{(aq)} | Ag_{(s)}$$

b)
$$Sn_{(s)} |Sn^{2+}_{(aq)}| |Ag_{(s)}| Ag^{+}_{(aq)}$$

c)
$$Sn_{(s)} | Sn^{2+}_{(aq)} | | Ag^{+}_{(aq)} | Ag_{(s)}$$

d)
$$Sn_{(s)} | Sn^{2+}_{(aq)} | Ag^{+}_{(aq)} | Ag_{(s)}$$

e)
$$Sn_{(s)}|Ag^{+}_{(aq)}|Sn^{2+}_{(aq)}|Ag_{(s)}$$

A tabela periódica proposta em 1869 sofreu algumas modificações, para que se adequasse às novas descobertas e ficasse melhor organizada.

Informe se é verdadeiro (V) ou falso (F) o que se afirma sobre a organização atual da tabela periódica e as propriedades físicas e químicas dos elementos.

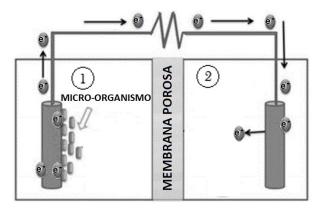
- () Atualmente a periodicidade é organizada através da listagem em ordem crescente de massa atômica.
- () As afinidades eletrônicas dos elementos químicos, de uma forma geral, apresentam valores mais positivos ao longo de um grupo.
- () Todos os elementos localizados na coluna 18 da tabela periódica apresentam configuração eletrônica da camada de valência igual a ns²np6.
- () Os elementos químicos estão dispostos de forma que seus raios atômicos diminuam ao longo do período, sendo observado um maior decréscimo na série dos elementos de transição da que nos elementos representativos.
- () A energia de ionização varia com o número atômico, porém é possível verificar algumas irregularidades, mesmo em períodos onde não há elementos de transição. Um exemplo é o fato da energia de ionização do boro ser menor do que a do berílio.

De acordo com as afirmações, a sequência correta é

a) (F); (V); (F); (F); (V).

b) (V); (F); (V); (F); (F).

c) (F); (V); (F); (V); (V).


d) (V); (F); (F); (V); (F).

e) (F); (F); (V); (F); (V).

OUESTÃO 19

A busca por fontes de energia através de tecnologias voltadas para a geração de energia limpa, a fim de minimizar ou até mesmo anular impactos negativos no meio ambiente, vem sendo investigada. Exemplos dessas tecnologias são as biocélulas a combustível, dispositivos capazes de transformar energia química em elétrica. As biocélulas utilizam compostos orgânicos, que serão catalisados por micro-organismos no processo de obtenção de energia elétrica.

O esquema a seguir apresenta uma biocélula combustível.

Fonte: Elaborado pela Banca, 2019.

Admita que o composto orgânico utilizado pelos micro-organismos seja a glicose e considere para essa biocélula as seguintes semi-reações de redução e seus respectivos potenciais:

$$O_{2} + 4e^{-} + 4H^{+} \rightarrow 2H_{2}O \Delta E^{0} = +0.81V$$

$$6CO_{2} + 24e^{-} + 24H^{+} \rightarrow C_{6}H_{12}O_{6} + 6H_{2}O \Delta E^{o} = -0.43 \text{ V}$$

Avalie as afirmações sobre a biocélula combustível proposta e o seu funcionamento.

- I- O fluxo de elétrons nessa biocélula ocorre do ânodo para o cátodo.
- II- A diferença de potencial gerada por essa biocélula é igual a +5,29 V.
- III- O agente oxidante dessa biocélula são os micro -organismos.
- IV- O agente redutor dessa biocélula é a glicose.
- V- Os micro-organismos são responsáveis pelo aumento da energia de ativação da semi-reação presente no compartimento 1.

Está correto apenas o que se afirma em

- a) I e IV.
- b) II e III.
- c) III e V.
- d) I, II e IV.
- e) II, III e IV.

Os experimentos I, II e III, envolvendo espécies gasosas, foram realizados, individualmente, em recipientes de

Considerando que os gases apresentam comportamento ideal, associe as colunas relacionando a condição/ dado da mistura de reação analisada em um instante de tempo (t) de cada experimento à conclusão sobre o equilíbrio da reação no instante analisado.

Condições/dados da mistura

- 1) Experimento I: $2SO_{3(g)} \leftrightarrows 2SO_{2(g)} + O_{2(g)}$
- * 1,0 x 10^{-2} mol de SO_3 , 2,0x 10^{-2} mol de SO_2 e 0,24 mol de O_2 , $K_{eq} = 0.338 à 500K$.
- 2) Experimento II: $H_{2(g)} + I_{2(g)} \leftrightarrows 2HI_{(g)}$
- * 0,277 mol de H $_{_{2}}$, 2,37 mol de I $_{_{2}}$ e 3,74 mol de HI, K $_{_{\mathrm{eq}}}$ = 50 à 721 K.
- 3) Experimento III: $3H_{2(g)} + N_{2(g)} \leftrightarrows 2NH_{3(g)}$
- * 0,05 atm H_2 , 0,08 atm de N_2 , 2,6 atm de NH_3 , K_{eq} 6,76 x 10⁵ à 25 °C.

A sequência correta dessa associação é

- a) (1); (3); (2).
- b) (2); (3); (1).
- c) (2); (1); (3).
- d) (3); (2); (1).
- e) (3); (1); (2).

Conclusões

- () Reação está em equilíbrio.
- () Reação tende a formar produtos.
- () Reação tende a formar reagentes.

CONCURSO EBTT 2018

GABARITO (RASCUNHO)

Química - Barbacena

01	А	В	С	D	Е
02	А	В	С	D	Е
03	А	В	С	D	Е
04	А	В	С	D	Е
05	А	В	С	D	Е
06	А	В	С	D	Е
07	А	В	С	D	E
08	А	В	С	D	E
09	А	В	С	D	Е
10	А	В	С	D	E
11	А	В	С	D	Е
12	А	В	С	D	Е
13	А	В	С	D	E
14	А	В	С	D	E
15	А	В	С	D	E
16	А	В	С	D	Е
17	А	В	С	D	Е
18	А	В	С	D	Е
19	А	В	С	D	Е
20	А	В	С	D	Е

O gabarito e o caderno de provas serão divulgados no endereço eletônico: concurso.fundacaocefetminas.org.br

*ATENÇÃO:*AGUARDE AUTORIZAÇÃO PARA VIRAR O CADERNO DE PROVA.